机译:动态相互作用决定了峰值和波浪发作的计算机网络模型中的部分丘脑静止。
机译:缺乏癫痫发作模型的皮质粒网络中GABA免疫反应性的发育变化
机译:在没有癫痫病的遗传模型中,中压5-9Hz振荡会引起波峰放电:丘脑中枢和网状神经元的体内双细胞外记录。
机译:癫痫发作期间皮质源动力学和相互作用的建模
机译:满量程和部分量程电压源转换器与电网之间次同步相互作用的建模,分析和缓解。
机译:使用贝叶斯动力学系统,模型平均和神经网络来确定社会经济指标之间的相互作用
机译:EEG信号在EMD域S. S. Shafiul Alam,S中的非线性动力学使用非线性动力学。 M. Shafiul Alam,Aurangozeb和Syed Tarekshahriar摘要 - 基于EMD Chaos的方法,提出了对应于健康人的EEG信号,癫痫发作期间的癫痫患者和Seizureattacks。脑电图(EEG)首先被凭经上分解为内在模式功能(IMF)。这些IMF的非线性动力学在最大范围的指数(LLE)和相关尺寸(CD)方面是量化的。本域中的混沌分析应用于与健康人相对应的大型脑电图(Asepileptic患者)(两者都有癫痫发作)。因此,所获得的LLE和CD表展的价值可以从EMD领域的其他EEG信号中清晰地区分脑电图的表达展示。本拟议的方法可以帮助研究人员以预测癫痫发作的癫痫发作技术。索引术语 - 脑电图(EEG),仿真态分解(EMD),最大的Lyapunov指数(LLE),相关维度(CD),癫痫发作。作者与电气电子和电子工程公司,孟加拉国工程和技术大学,孟加拉国达卡 - 1000(电子邮件:imamul@eee.buet.ac.bd)pdf cite:s. m. shafiul Alam,s。 M. Shafiul Alam,Aurangozeb和Syed Tarek Shahriar,“EEG信号歧视在EMD领域的非线性动态,”计算机电气工程卷国际杂志。 4,不。 3,pp。326-330,2012,上一篇论文对情绪的看法,使用建设性的学习言论下一篇论文物理层障碍意识到OVPN连接选择机制版权所有©2008-2013。国际计算机科学与信息技术协会出版社(IACSIT Press)